A complex periodic QES potential and exceptional points

نویسنده

  • R Roychoudhury
چکیده

We show that the complex PT -symmetric periodic potential V (x) = −(iξ sin 2x+ N)2, where ξ is real and N is a positive integer, is quasi-exactly solvable. For odd values of N ≥ 3, it may lead to exceptional points depending upon the strength of the coupling parameter ξ. The corresponding Schrödinger equation is also shown to go over to the Mathieu equation asymptotically. The limiting value of the exceptional points derived in our scheme is consistent with known branch-point singularities of Mathieu equation. Short title: Complex periodic QES potential

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 71 0 . 18 02 v 2 [ qu an t - ph ] 1 2 N ov 2 00 7 A complex periodic QES potential and exceptional points

We show that the complex PT -symmetric periodic potential V (x) = −(iξ sin 2x+ N)2, where ξ is real and N is a positive integer, is quasi-exactly solvable. For odd values of N ≥ 3, it may lead to exceptional points depending upon the strength of the coupling parameter ξ. The corresponding Schrödinger equation is also shown to go over to the Mathieu equation asymptotically. The limiting value of...

متن کامل

O ct 2 00 7 A complex periodic QES potential and exceptional points

We show that the complex PT -symmetric periodic potential V (x) = −(iξ sin 2x+ N)2, where ξ is real and N is a positive integer, is quasi-exactly solvable. For odd values of N ≥ 3, it may lead to exceptional points depending upon the strength of the coupling parameter ξ. The corresponding Schrödinger equation is also shown to go over to the Mathieu equation asymptotically. The limiting value of...

متن کامل

Duality and Self-Duality (Energy Reflection Symmetry) of Quasi-Exactly Solvable Periodic Potentials

A class of spectral problems with a hidden Lie-algebraic structure is considered. We define a duality transformation which maps the spectrum of one quasi-exactly solvable (QES) periodic potential to that of another QES periodic potential. The self-dual point of this transformation corresponds to the energy-reflection symmetry found previously for certain QES systems. The duality transformation ...

متن کامل

Exceptional points in bichromatic Wannier–Stark systems

The resonance spectrum of a tilted periodic quantum system for a bichromatic periodic potential is investigated. For such a bichromatic Wannier–Stark system, exceptional points, degeneracies of the spectrum, can be localized in parameter space by means of an efficient method for computing resonances. Berry phases and Petermann factors are analysed. Finally, the influence of a nonlinearity of th...

متن کامل

ua nt - p h / 01 07 09 5 v 1 1 9 Ju l 2 00 1 A PT - symmetric QES partner to the Khare - Mandal potential with real eigenvalues

We consider a PT-symmetric partner to Khare-Mandal’s recently proposed non-Hermitian potential with complex eigenvalues. Our potential, which is quasi-exactly solvable, is shown to possess only real eigenvalues. PACS : 03.65.Bz, 03.65.Ge

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008